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Abstract

The integration of geo-information from multiple sources and of diverse nature in developing mineral favourability

indexes (MFIs) is a well-known problem in mineral exploration and mineral resource assessment. Fuzzy set theory

provides a convenient framework to combine and analyse qualitative and quantitative data independently of their

source or characteristics.

A novel, data-driven formulation for calculating MFIs based on fuzzy analysis is developed in this paper. Different

geo-variables are considered fuzzy sets and their appropriate membership functions are defined and modelled. A new

weighted average-type aggregation operator is then introduced to generate a new fuzzy set representing mineral

favourability. The membership grades of the new fuzzy set are considered as the MFI. The weights for the aggregation

operation combine the individual membership functions of the geo-variables, and are derived using information from

training areas and L1 regression.

The technique is demonstrated in a case study of skarn tin deposits and is used to integrate geological, geochemical

and magnetic data. The study area covers a total of 22.5 km2 and is divided into 349 cells, which include nine control

cells. Nine geo-variables are considered in this study. Depending on the nature of the various geo-variables, four

different types of membership functions are used to model the fuzzy membership of the geo-variables involved.

r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Advances in computer technologies play an increas-

ingly important role in the exploration and assessment

of mineral deposits. Geographic Information Systems

are frequently used to evaluate mineral potential in

exploration districts (Bonham-Carter, 1994) and provide

tools to deal with multiple data sets, or layers, of diverse

character from various sources. The combination and

evaluation of these layers may be either visual/qualita-

tive or quantitative. Quantitative integration of diverse

exploration data and evaluation of results is an intricate

task where mathematical/statistical approaches are

employed to: (a) maximize the extraction of information

from the data; (b) effectively combine diverse informa-

tion; (c) provide tools to quantify inherent uncertainties;

(d) rank potential targets; and (e) reduce data processing

and evaluation time. Quantitative integration of diverse

multi-source geo-information, including geological, geo-

chemical, geophysical and remote-sensing data has been

attempted within several mathematical or statistical

frameworks. Notable approaches include regression-

based methods (Sinclair and Woodsworth, 1970; Agter-

berg et al., 1972; McCammon, 1973; Chung and

Agterberg, 1980), characteristic analysis (Botbol et al.,

1978; Sinding-Larsen and Strand, 1981; McCammon

et al., 1983), canonical correlation analysis (Pan and
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Harris, 1992; Pan, 1993a, b) and Bayesian frameworks

(Duda et al., 1978; Harris, 1984; Bonham-Carter et al.,

1988; Singer and Kouda, 1988). Recent trends in

modelling geo-information are based on weights of

evidence (Bonham-Carter et al., 1988; Agterberg, 1989,

1992), the Dampster–Shafer belief and plausibility

functions (Shafer, 1976; Moon, 1990; An et al., 1994),

fuzzy sets (Zadeh, 1965; An et al., 1991; Chung and

Fabbri, 1993), and neural networks (Singer and Kouda,

1996, 1997a, b). Furthermore, comprehensive presenta-

tion of existing methods for quantitative data integra-

tion in mineral exploration and mineral favourability

analysis is available in textbooks (Bonham-Carter, 1994;

Pan and Harris, 2000).

Previous approaches were based on the spatial

mapping of mineral potential or favourability of mineral

occurrence over an exploration play. Although not

always explicitly defined, these approaches are formu-

lated based on the notion of a mineral favourability

index, MFI, yðpÞ; of an exploration cell p defined as

an aggregation, Fð�Þ; of geo-variables xi; i ¼ 1;y; n;
and their transformations gpiðxiÞ such that yðpÞ ¼
F ðgp1ðxiÞ;y; gpnðxnÞÞ: This formulation requires a spe-

cific definition of yðxÞ; the transformation of the

available data to a suitable form, and the definition of

aggregation function F. In predicting favourability, the

various techniques attempt to merge diverse data and

may be challenged in their effectiveness and degree of

integration. For example, most of the statistical

approaches based on regression and characteristics or

canonical correlation analysis transform the available

data to binary or ternary form. Such techniques may be

limited in the type of information that can be quantified.

Bayesian methods and weights of evidence approaches

may be limited by conditional independence require-

ments for the data used. Belief and plausibility functions

may, in practice, be difficult to interpret and assess.

A limitation of the above approaches is that they can be

somewhat inflexible in expressing the different degrees of

favourability of the mineral occurrence for each of the

individual geo-variables considered.

Fuzzy sets provide an alternative framework that

could improve upon some of the limitations in previous

techniques. A fuzzy set-based formulation is used by An

et al. (1991) to integrate geological and geophysical data

from the Farley Lake area, Canada. The study uses the

algebraic-sum and g aggregation operators to outline

favourable areas for base metal and iron deposits, based

on an approach also advocated by Chung and Fabbri

(1993). Although a notable development, the approach

used to combine geo-information does not take into

account the individual relative importance of geo-

variables in quantifying favourability for mineral

occurrence. In addition, the approach is ‘knowledge-

driven’ and as such does not include objective ‘data-

driven’ criteria in the combination of the geo-informa-

tion used. A recent study (Cheng and Agterberg, 1999)

presents a fuzzy set extension of the weight of evidence

approach, which, differing from the approach presented

herein, retains similar limitations to its progenitor.

The present study contributes a new data-driven

approach in deriving a fuzzy mineral favourability index

(FMFI) of mineral occurrence suitable for mineral

exploration and resource assessment.

2. Fuzzy sets

Geological information and data interpretations used

in mineral exploration are inherently ambiguous. The

quantitative precision of expressions like ‘‘relatively

high’’, ‘‘high’’, ‘‘fair’’, ‘‘low’’, and ‘‘relatively low’’ or

‘‘fairly favourable/unfavourable for the mineral occur-

rence’’, as well as the grey areas between these

expressions, is difficult to define. Fuzzy set theory

(Zadeh, 1965; Zimmermann, 1991) provides a mathe-

matical framework to represent the linguistic and data

ambiguities frequently encountered in mineral explora-

tion, geological information analysis and interpretation.

The theory formally associates any statement with a

quantifiable measure indicating the degree of possibility

of the statement.

2.1. Definition and examples

If X is a collection of objects denoted by x; fuzzy set A

in X is the set of ordered pairs

A ¼ fðx; mAðxÞÞjxAXg; ð1Þ

where mAðxÞA is termed the membership function or

membership grade of x in A (Zadeh, 1965). mAðxÞ maps
X to the membership space M: When M contains only

the two points 0 and 1, A is a non-fuzzy set and mAðxÞ is
identical to the characteristic function of a regular, non-

fuzzy, set. The range of mAðxÞ is ½0; 1	; where 0 expresses
non-membership and 1 expresses full membership.

A simple example may be the fuzzy set A; ‘‘the

number of faults is favourable for mineral occurrence’’,

described as

A ¼ fð1; 0:3Þ; ð2; 0:7Þ; ð3; 0:9Þ; ð4; 0:8Þ; ð5; 0:6Þ; ð6; 0:4Þg:

The most favourable situation for mineral occurrence is

when the membership function is the highest. Here, the

membership function is 0.9 and corresponds to the

presence of three faults in an exploration cell. As

another example, the fuzzy set ‘‘distance to a fault is

favourable for mineral occurrence’’ is defined by Eq. (1)

and a membership function mAðxÞ ¼ 1=½1þ ðx=500Þ2	:
The membership function indicates that the closer a cell

is to a favourable fault, the higher the favourability for

mineral occurrence.
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2.2. Aggregation operations

Aggregation operations on fuzzy sets are used to

combine them to a single set (Dubois and Prade, 1985;

Klir and Folger, 1988; Zimmermann, 1991). An

aggregation operation F is defined as the mapping

F : ½0; 1	n-½0; 1	 ð2Þ

for nX2: When applied to n fuzzy sets A1;A2;y;An

defined on X1;X2;y;Xn; the aggregation operation F

produces an aggregate fuzzy set A defined on X ¼
ðX1;X2;yXnÞ; by operating on the membership func-

tions of each x ¼ ðx1;x2;y; xnÞAX in the aggregated set

mAðxÞ

¼ F ðmA1
ðx1Þ; mA2

ðx2Þ;y; mAn
ðxnÞjxiAXi; i ¼ 1;y; nÞ

ð3Þ

for each xAX : Permissible aggregation operations must

satisfy the boundary conditions

F ð0; 0;y; 0Þ ¼ 0 and F ð1; 1;y; 1Þ ¼ 1 ð4Þ

and be monotonic and non-decreasing in all their

arguments, i.e.

ai; biA; ½0; 1	; if aipbi ; i ¼ 1 to n;

then F ða1; a2;y; anÞpF ðb1; b2;y; bnÞ: ð5Þ

Aggregation operations often used in mineral ex-

ploration are outlined in Appendix A.

2.3. Aggregation operations and mineral favourability

Different aggregation operators may reflect different

geological criteria in mineral exploration. For the criterion

‘‘if the measurements of geo-variable X1 AND geo-

variable X2 in a cell p are favourable for mineral

occurrence, then p is favourable for mineral occurrence’’,

the corresponding operator can be selected either as a

Cartesian product or an algebraic product; for the

criterion ‘‘if the measurement of geo-variable X1 OR the

measurement of X2 in cell p is favourable for mineral

occurrence, then p is favourable for mineral occurrence’’,

the corresponding operator can be selected as an algebraic

sum or a bounded sum. If neither ‘‘AND’’ nor ‘‘OR’’ can

represent the favourability of the mineral occurrence in

terms of X1 and X2 (for example, for the criterion ‘‘the

favourability of mineral occurrence is determined by

the favourabilities of X1 and X2’’) a g-operator may be

selected as the corresponding aggregation operator.

3. A fuzzy mineral favourability index

3.1. Definition and estimation

In mineral exploration, an exploration terrain can

be represented by a grid of cells and each cell assessed as

a potential exploration target. The mineral favourability

index of an exploration cell is assessed from the

available geo-variables and characterized by proposition

A: ‘‘Cell is favourable for the mineral occurrence.’’ In

fuzzy set theory, proposition A can be considered as a

fuzzy set with a membership function which can

quantify how good a member the cell is to fuzzy set A:
In the proposition A above, specific values of the

membership function quantify the degree or grade that a

given cell is favourable for mineral occurrence.

The FMFI of cell p is defined as yf ðpÞ ¼ mAðxðpÞÞ; the
membership grade of the fuzzy set A: ‘‘mineral favour-

ability’’ in p: Furthermore, we may consider the fuzzy set
Ai: ‘‘Measurement of geo-variable Xi in a given cell

p; xiðpÞ; is favourable for mineral occurrence’’ with a

membership function mAi
ðxiðpÞÞ: According to Eq. (3),

the FMFI can then be represented as an aggregation

operation on mAi
ðxiðpÞjxiAXi; i ¼ 1;y; nÞ

yf ðpÞ ¼ mAðxðpÞÞ

¼F ðmA1
ðx1ðpÞÞ; mA2

ðx2ðpÞÞ;y; mAn
ðxnðpÞÞÞ: ð6Þ

The definition of the aggregation operation F ð�Þis critical
for derivation of the FMFI. All of the aforementioned

aggregation operations have the following conversion

property:

F ðmA1
ðx1Þ; mA2

ðx2ÞÞ ¼ F ðmA2
ðx2Þ; mA1

ðx1ÞÞ;

where F ð�Þ denotes any of these aggregation operations.

As a result, the relative importance of the individual

fuzzy subset may be neglected; for example, in copper

deposits occurring in gabbros, mineral occurrence is

mostly associated with a gravity anomaly, X1; and also

occasionally associated with a geochemical copper

anomaly in soil, X2: If for a given cell p; due to a

possible deep-seated copper deposit, x1ðpÞ is favourable
but x2ðpÞ is unfavourable for mineral occurrence, then

mA1
ðx1ðpÞÞ ¼ 1; mA2

ðx2ðpÞÞ ¼ 0 and

yf ðpÞ ¼ mAðxðpÞÞ

¼F ðmA1
ðx1ðpÞÞ; mA2

ðx2ðpÞÞÞ

¼F ð1; 0Þ

while cell p could be highly favourable for mineral

occurrence. On the other hand, if for a cell q;x1ðqÞ is
unfavourable (e.g. a local absence of gabbros and

gravity anomalies) while x2ðqÞ is favourable for mineral
occurrence, then mA1

ðx1ðqÞÞ ¼ 0; mA2
ðx2ðqÞÞ ¼ 1 and

yf ðqÞ ¼ mAðxðqÞÞ

¼F ðmA1
ðx1ðqÞÞ; mA2

ðx2ðqÞÞÞ

¼F ð0; 1Þ

while q is unfavourable for mineral occurrence.

This can be expressed as

mAðxðpÞÞ ¼ Fð1; 0Þ > F ð0; 1Þ ¼ mAðxðqÞÞ;
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stressing the importance of the relative contribution of

the information used; it is not generally satisfied by the

aggregation operations previously mentioned.

To overcome the limits of common aggregation

operations and express the degree of importance and

relevance of individual geo-variables to mineral occur-

rence, the following weighted average is suggested as the

suitable aggregation operation for an FMFI:

yf ðpÞ ¼ mAðxðpÞÞ ¼
Xn

i¼1

limAi
ðxiðpÞÞ; ð7Þ

where li is the weight indicating the relative importance

of the fuzzy set Ai for A: Conditions in Eq. (4) lead to

the unbiasness condition

F ð1; 1;y; 1Þ ¼
Xn

i¼1

li ¼ 1:

In addition, for any set of values fmAi
ðxiðpÞÞ; i ¼

1;y; ng; it is required that

F ðmA1
ðx1ðpÞÞ; mA2

ðx2ðpÞÞ;y; mAn
ðxnðpÞÞÞX0

which leads to non-negative weights liX0; i ¼ 1;y; n:
The required aggregation operation is therefore defined

as

mAðxðpÞ ¼
Xn

i¼1

limAi
ðxiðpÞÞ;

Xn

i¼1

li ¼ 1 8liX0: ð8Þ

3.2. An example

Consider the fuzzy set A: ‘‘Cell p is favourable for the

occurrence of a gabbros hosted copper deposit.’’ Cell p

is to be assessed from geological information grouped in

the form of three relevant fuzzy sets:

A1=the gravity survey in p is favourable for mineral

occurrence;

A2=the elemental copper in soil in p is favourable for

mineral occurrence;

A3=the distance between p and a fault system is

favourable for mineral occurrence.

If, for example, the related weights are derived from

Eq. (8) and found to be fl1; l2; l3g ¼ f0:4; 0:2; 0:4g; then
the FMFI is

mAðxðpÞÞ ¼ 0:4 mA1
ðx1ðpÞÞ þ 0:2 mA2

ðx2ðpÞÞ þ 0:4 mA3
ðx3ðpÞÞ:

For cells p and q with measurements it is

p : fx1ðpÞ; x2ðpÞ; x3ðpÞg ¼ f45 mgal; 15 ppm;0:4 kmg

and

fmA1
ð45 mgalÞ; mA2

ð15 ppmÞ;mA3
ð0:4 kmÞg ¼ f0:9; 0:1; 0:8g;

q : fx1ðqÞ; x2ðqÞ; x3ðqÞg ¼ f5mgal; 65 ppm;0:3 kmg

and

fmA1
ð5mgalÞ; mA2

ð65 ppmÞ; mA3
ð0:3 kmÞg ¼ f0:1; 0:95; 0:85g:

Then, the FMFI is mAðxðpÞÞ ¼ 0:7 and mAðxðqÞÞ ¼ 0:57;
indicating p is more favourable for the mineral

occurrence than q:
The definition of membership functions

fmA1
ðx1Þ; mA2

ðx2Þ;y; mAn
ðxnÞg and the derivation of

weights fl1; l2;y; lng are both crucial for the effective-

ness of the FMFI. The membership functions

fmA1
ðx1Þ; mA2

ðx2Þ;y; mAn
ðxnÞg can be defined objectively

based on the characteristics of a geo-variable using the

normal practice in exploration, whereas the weights

fl1; l2;y; lng can be derived through a variety of

optimal methods. All methods must be constrained by

the conditions of unbiased and non-negative weights

(Eq. (8)).

4. Application in exploring skarn tin deposits

4.1. Geology and control cells

The study area is located in southwestern China near

the contact zones of the south margin of the Lugu

granitic body (Yang et al., 1986) as shown in Fig. 1, and

includes several skarn tin deposits. The exposed rocks in

the study area include Presinian slightly metamorphosed

sandstone and carbonate rocks, Triassic/Jurassic sand-

stones, and Quaternary sandstones. Tin deposits occur

exclusively in Presinian rocks.

The Lugu granites are the major magmatic rock

type in the study area, with their outcrop occupying

about 180 km2. The Lugu granites in the study area

are related to skarn tin deposits both in space and

in time. Petrochemically the granites contain high

contents of Sn (58 ppm), Be (8.8 ppm), and B

(1084 ppm) and represent an abundant resource of tin

mineralization in the study area. Tin deposits occur in

all but the external contact zone of the Lugu granitic

body. The width of the external contact zone is

approximately 2 km.

N-E trending faults control the distribution of the ore

deposits, and their ages determine the shape and size of

ore bodies. The tin deposits in the study area are usually

associated with magnetite mineralization; therefore, the

presence of magnetite mineralization can be regarded as

a favourable direct indicator for the occurrence of tin

deposits. Since a magnetic anomaly may also indicate

the presence of magnetite mineralization, it is viewed as

an indirect index for mineral occurrence. Soil geochem-

ical surveys show that a combination of anomalous tin,

copper, lead, and zinc may indicate tin mineralization

near the earth’s surface.

The study area covers a total of 22.5 km2 and is

divided into 349 cells with a unit cell size of 0.64 km2.
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There are nine control cells while tin mineralization

occurs in all control cells.

4.2. Geo-variables and their membership functions

Variables X12X9 are selected in the study area based

on the discussion above. Table 1 shows the selected geo-

variables and their characteristics. The nine geo-vari-

ables are as follows: X1: The average Sn concentration

of soil in a given cell. X2: The average soil Cu content in

a cell. X3: The average Pb concentrations in soil at a

given cell. X4: The average Zn concentrations in soil at a

given cell. X5: The distance between the centre of a given

cell and the boundary of the granite. The variable is

positive if the cell is in the external contact zone or

negative if the cell is in the internal contact zone. X6: The

ratio of area occupying Presinian sandstone-slate at a

given cell. X7: Coded as 1 or 0 based on the presence or

absence of N-E trending faults in a given cell. X8: Coded

as 1 or 0 based on the presence or absence of magnetite

mineralization in a given cell. X9: Coded as 1 or 0 based

on the presence or absence of magnetic anomalies in a

given cell.

For each geo-variable Xi; the corresponding fuzzy set
is proposed as Ai: ‘‘Measurement of Xi in a given cell p;
xiðpÞ; is favourable for the occurrence of skarn tin

deposits.’’ Four types of membership functions are

defined as follows:

(i) Geochemical anomalies in the concentrations of

elements Sn, Cu, Pb and Zn are favourable for the

occurrence of tin deposits. They are recognized in terms

of their average m and standard deviation s; while the

membership function of the corresponding fuzzy set can

be defined from the membership function

mAðX Þ ¼
1�

bs

x � am þ bs
; x > am;

0; otherwise;

8<
: ð9Þ

where constants a; bX0: The properties of this model are

mAðxÞ ¼ 0 when xram

mAðxÞ ¼ 0:5 when x ¼ am þ bs

mAðxÞ-1 when x-þN

mAðxÞ is a monotonic increasing function:

Fig. 1. Geological map of study area. Southern margin of Lugu granite deposit is shown in northwest part of area.

Table 1

Geo-variables used in this study

Geo-variable Definition of geo-

variable

Type of

measurement

X1 Sn Concentration in

soil (ppm)

X2 Cu Concentration in

soil (ppm)

X3 Pb Concentration in

soil (ppm)

X4 Zn Concentration in

soil (ppm)

X5 Contact zone of

granite

Distance to the

boundary (m)

X6 Presinian

sandstone-slate

Ratio of area

covered

X7 N-E trending faults Presence

X8 Magnetite

mineralization

Presence

X9 Magnetic anomalies Presence
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The selection of coefficients a and b depends on the

definition of anomalies. It is highly likely that no

anomaly is present when the concentration is less than

the mean, implying that constant a is 1. The unclear

boundary between ‘‘anomaly’’ and ‘‘background’’ is

around the mean plus one standard deviation, implying

that b is also 1. In the present study, a and b are selected

as 1, which is sufficient for the scope of this analysis. The

function model (Eq. (9)) becomes

mAðX Þ ¼
1�

s

x � m þ s
; x > m;

0; otherwise;

8<
:

where m and s are the mean and standard deviation of

the geochemical measurements in a cell. This model is

shown in Fig. 2.

(ii) The distance to the centre of external contact zones

is recognized as an indicator for possible mineralization.

The smaller the distance, the higher the favourability for

mineral occurrence. The following membership function

can define the corresponding fuzzy set:

mAðX Þ ¼
1

1þ ðx � bÞ=a
� �2; ð10Þ

where a; b > 0; a denotes the range and b expresses the

centre (see Fig. 3).

The properties of the model in Eq. (10) are

mAðxÞ is symmetric to the centre b;

mAðxÞ ¼ 0:5 when x ¼ b7a;

mAðxÞ ¼ 1 when x ¼ b;

mAðxÞ-0 when x-7N:

In the present study, the centre and range of the external

contact zone are all approximately 1 km. Thus, con-

stants a and b are set to 1 and the membership function

in Eq. (11) becomes

mAðX Þ ¼
1

1þ ðx � 1Þ2
:

(iii) The ratio of the area occupying Presinian

sandstone-slate is regarded as favourable for miner-

alization when it is over 90%. The degree of favour-

ability decreases as the ratio decreases and is regarded as

unfavourable when it drops to less than 10%. Accord-

ingly, the membership function of the corresponding

fuzzy set can be defined from

mAðX Þ ¼

1; 1xX0:9;

ðx � 0:1Þ2=ð0:9� 0:1Þ2; 0:1pxo0:9;

0; xo0:1

8><
>: ð11Þ

as shown in Fig. 4.

(iv) The presence of N-E trending faults, magnetite

mineralization, and magnetic anomalies can be ex-

pressed through membership functions which corre-

spond to a ternary model. This model expresses

favourability as a function of existence of the corre-

sponding geo-variable and it is

mAðX Þ ¼

1; x exist;

0:5; x0s existance unknown;

0; does not exist:

8><
>: ð12Þ

a = 10

b = 65 

µ

x

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100 140120 

Fig. 3. Second type of membership function defined in Eq. (10).

m = 10 

s = 10 
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Fig. 2. First type of membership function defined in Eq. (9).

µ

x

Fig. 4. Third type of membership function defined in Eq. (11).
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4.3. Control cells

The aggregation operation defined by the system of

Eq. (8) is preferably derived using a set of control cells in

the exploration area under consideration. Control cells

provide key information about the local relative

importance of geo-variables to mineralization and are

selected on mainly two criteria: (a) they must be well

explored; and (b) they must be available to quantifica-

tion by all relevant geo-variables.

Control cells in the study area with examples of

membership function values for tin, magnetite

mineralization, and N-E trending faults are shown in

Figs. 5–7, respectively. The control cells in the study

area have the following characteristics:

(a) All control cells are distributed along the contact

zone of the south margin of the Lugu granitic

body.

(b) Most control cells have high membership values

of the fuzzy set corresponding to the Sn anomaly,

indicating the presence of Sn content in these

cells.

(c) Most control cells exhibit magnetite mineralization.

(d) Most control cells contain N-E trending faults.

4.4. Deriving fuzzy mineral favourability indices

When a set of control cells is well defined and meets

the criteria previously described, the weights of the

aggregation operation in Eq. (8) can be obtained by

Fig. 5. Control cells with membership values for tin.

Fig. 6. Control cells with membership values for presence of faults.
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restricted L1 regression. Consider the following optimi-

zation formulation:

minimize
PK

k¼1 jmAðxðpkÞÞ �
Pn

i¼1 l
0
imAi

ðxiðPkÞÞj

subject to 0pl0i1 8l0i;
ð13Þ

where K denotes the number of control cells and pk

denotes a control cell (k ¼ 1;y;K). The minimization

problem in Eq. (13) can be solved by extending the

techniques of interval linear programming to include

interval constraints on weights (Armstrong and Hultz,

1977; Zanakis and Rustagi, 1982). The desired weights

in Eq. (8) are obtained from

li ¼ l0i=
Xn

i¼1

l0i: ð14Þ

Table 2 shows the weights from restricted L1

regression in the study area using the available control

cells. The weights of the fuzzy sets corresponding to

anomalies in concentrations for the elements Cu, Pb and

Zn are relatively small, implying a weak, distant

relationship between these geo-variables and mineraliza-

tion. The weights of the fuzzy sets corresponding to the

presence of Sn anomalies, N-E trending faults, and

magnetite mineralization are relatively large: l1 þ l7 þ
l8 > 0:5; implying that mineral occurrence is dominated

by these three geo-variables. This result is consistent

with previous exploration experience in the study area.

The recognition of the relative importance and

significance of geo-variables to mineral occurrence is

critical to mineral prediction, as stressed earlier. As a

result, the weighted average operator in Eq. (8) is

superior to other aggregation operators. In the present

study, when measurements of the elements copper, lead

and zinc in a given cell p are favourable and measure-

ments of tin, magnetite mineralization and N-E trending

faults are unfavourable for mineral occurrence, then the

presence of mineralization in p is highly unfavourable.

On the other hand, when measurements of copper, lead

and zinc are unfavourable but measurements of tin,

magnetite mineralization, and N-E trending faults are

favourable, then p is highly favourable for mineral

occurrence. In short, geological consistency is preserved

by the weights shown in Table 2.

4.5. Results for favourability assessment and target

identification

The FMFIs of all 349 cells in the study area are

generated from the aggregation operation in Eqs. (7)

and (8) and use the derivations in Eqs. (13) and (14).

Fig. 8 shows the 20 cells with the highest FMFIs

including the nine control cells. In comparison to

Figs. 5–7, those cells showing the presence of a tin

anomaly, N-E trending faults and magnetite mineraliza-

tion are associated with high FMFIs (yf ðpÞX0:63Þ;

Fig. 7. Control cells with membership values for magnetite mineralization.

Table 2

Weights of fuzzy sets derived from control cells in study area

Fuzzy set A1

(Sn)

A2

(Cu)

A3

(Pb)

A4 (Zn) A5

(contact

zone)

A6

(Presinian

rocks)

A7 (faults) A8 (magnetite

mineralization)

A9 (magnetic

anomaly)

Weight 0.21 0.04 0.03 0.03 0.08 0.12 0.18 0.20 0.11

X. Luo, R. Dimitrakopoulos / Computers & Geosciences 29 (2003) 3–1310



reflecting the dominant role of these geo-variables in the

possible presence of tin mineralization. The FMFIs in

the remaining cells not shown in Fig. 8 are substantially

lower: ðyf ðpÞo0:3Þ in their FMFIs and the cells show a

marked, natural split from the cells shown in Fig. 8.

Note that the interpretation of the FMFIs is made in the

context of identifying a sequence of possible exploration

targets in the study area. In general, FMFI values

should not be interpreted in a strict sense; that is, the

chances of tin deposits in cell with FMFI of 0.70 are

higher than those of a cell with FMFI of 0.65; both cells

are highly likely targets.

In the western section of the study area, there is no cell

with high FMFIs except a control cell, suggesting that

the potential mineral occurrence is very limited. In the

eastern section, there are three cells with relatively high

FMFIs (0:49oyf ðpÞo0:56), clustered mostly around a

control cell, showing a high potential for tin occurrence.

The central part of the study area exhibits a large cluster

of high FMFI cells ðyf ðpÞX0:56Þ about the control cells.
N-E trending faults are well developed in this section,

suggesting a relatively high potential for Sn mineral

occurrences. An additional possible target area is

indicated in the southern central section of the study

area.

5. Summary and conclusions

The fuzzy set framework provides the analytical tools

to deal with qualitative and quantitative, multi-source

and multi-character geological information, information

which may be linguistically ambiguous, imprecise, and

incomplete. The present study defines the degree of

mineral favourability in terms of a fuzzy mineral

favourability index. The proposed FMFI combines

favourabilities from individual geo-variables rather than

direct measurements of these variables and characterizes

the degrees of these favourabilities with membership

functions. The character of any pertinent geo-variable is

used to define physically meaningful membership func-

tions for the available observation, as shown in the case

study.

The key element of the proposed approach is the

use of an unbiased, weighted average aggregation

operator to define the favourability grade of an

exploration cell. The data-driven determination of

weights for the contribution of individual geo-variables,

that is their membership functions, is based on

supervised training using control cells and restricted L1

regression. The use of weights emphasizes the discrimi-

nation of the importance of each geo-variable in the

mineral favourability of a cell, as well as its geological

appropriateness.

The case study shows the practical aspects of the

proposed fuzzy mineral favourability index in identify-

ing exploration targets for skarn tin deposits in the

vicinity of the Lugu granite body in southwestern China.

The proposed method identifies eleven geologically

consistent targets for further detailed exploration.

Several improvements of the proposed approach may

be considered in the future. When deriving weights for

Eq. (7), additional optimality criteria may be developed,

whereas in the situation of large numbers of control

cells, the fuzzy approach may be extended to include

spatial dependencies in geo-variables. An additional

consideration could be the introduction of a relative

confidence measure associated with the FMFI through

the definition of a companion fuzzy set ‘‘information

confidence in cell p’’.

Fig. 8. Twenty cells with higher FMFIs, including control cells.
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Appendix A. Common aggregation operations on fuzzy

sets

Some common aggregation operations on fuzzy sets

used in mineral exploration are given below. Additional

information for aggregation operations used in mineral

favourability analysis may be found in Bonham-Carter

(1994) and Pan and Harris (2000):

(a) The Cartesian product of a series of n fuzzy sets

A ¼ A1 � A2 �?� An has a membership func-

tion defined by

mAðxÞ ¼ minfmA1
ðx1Þ; mA2

ðx2Þ;y; mAn
ðxnÞg:

The aggregated membership value mAðxÞ is the

minimum value and not affected by others.

(b) The algebraic sum A ¼ A1 þ A2 þ?þ An has a

membership function defined by

mAðxÞ ¼
Yn

i¼1

ð1� ð1� mAi
ðxiÞÞ:

The aggregated membership value mAðxÞ is not

smaller than maxfmA1
ðx1Þ; mA2

ðx2Þ;y; mAn
ðxnÞg and

not greater than minf1;
Pn

i¼1 mAi
ðxiÞg:

(c) The algebraic product A ¼ A1 � A2 �y � An has a

membership function defined by

mAðxÞ ¼
Yn

i¼1

mAi
ðxiÞ:

The aggregated membership value mAðxÞ is not

greater than the minimum value and tends to be

very small due to the effect of multiplying values

less than 1; this operator decreases more rapidly

than the Cartesian product.

(d) The bounded sum A ¼ A1"A2"?"An has a

membership function defined by

mAðxÞ ¼ min



1;
Xn

i¼1

mAi
ðxiÞ
�
:

This operator increases more rapidly than the

algebraic sum.

(e) The g-operator defines a membership function

mAðxÞ ¼

 Yn

i¼1

mAi
ðxiÞ

1�g

! 
1�

Yn

i¼1

ð1� mAi
ðxiÞÞ

g

!
;

where gA½0; 1	: The g-operator is a combination of the

algebraic product and the algebraic sum. When g is 1,

this operator is the same as the algebraic sum; and when

g is 0, this operator is the algebraic product. The choice
of g provides a balance between the strong effects of the

algebraic sum and the weak effects of the algebraic

product.
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